国产精品资源在线观看_h网站视频在线观看_在线满18网站观看视频_国产黄色免费网

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

更新時(shí)間:2025-10-23      點(diǎn)擊次數(shù):230

前言

在太陽能光伏和先進(jìn)材料研究中,準(zhǔn)費(fèi)米能級(jí)分裂(QFLS)及其空間分布映射(QFLS mapping)是理解材料、診斷器件瓶頸、指導(dǎo)新材料開發(fā)和工藝優(yōu)化的關(guān)鍵工具。

QFLS是光生載流子(電子與空穴)在非平衡態(tài)下的化學(xué)勢(shì)能差。理論上,它直接等于理想器件的開路電壓(Voc)。但實(shí)際器件中,傳輸層和電極界面存在電化學(xué)勢(shì)損失,導(dǎo)致這個(gè)理想關(guān)系"不匹配"。分析這種不匹配,是提升光伏技術(shù)的突破口。


QFLS為何在光伏研究中如此重要?

QFLS直接衡量光伏吸收層材料質(zhì)量,代表器件開路電壓的理論上限。我們通過校準(zhǔn)光致發(fā)光(PL)光譜直接測(cè)量QFLS,避開制作完整器件時(shí)的復(fù)雜界面問題。通過QFLS,能直接評(píng)估材料本身的復(fù)合活性,幫助研究者在材料開發(fā)初期了解其內(nèi)在潛力。

QFLS測(cè)量直接量化太陽能電池中的輻射復(fù)合與非輻射復(fù)合損失。非輻射復(fù)合是導(dǎo)致QFLS偏離輻射極限的主要原因。通過這個(gè)差異,能準(zhǔn)確識(shí)別電壓損失的根源:來自材料本身的體復(fù)合,還是界面問題。


解讀QFLSVoc不匹配之謎"

理論上,QFLS應(yīng)等于器件的外部開路電壓VocVoc = ΔEF/q)。但實(shí)際器件中,兩者常有差異。這個(gè)差異揭示了界面處電化學(xué)勢(shì)損失的存在。

德國Fraunhofer ISEUli Würfel教授團(tuán)隊(duì)在2021年《Energy Technology》上指出,平面鈣鈦礦太陽能電池的Voc提升了250mV,但PL信號(hào)變化不到兩倍 [1]。他們認(rèn)為,這可以用少數(shù)載流子準(zhǔn)費(fèi)米能級(jí)(QFL)向?qū)?yīng)電極方向的梯度來解釋。異質(zhì)結(jié)中載流子速度飽和可能導(dǎo)致QFL不連續(xù)。在離子運(yùn)動(dòng)影響下,不匹配現(xiàn)象更明顯。這說明,即使材料本身質(zhì)量好,如果界面電化學(xué)勢(shì)傳輸不佳,外部Voc也無法體現(xiàn)內(nèi)部QFLS的潛力。

                                              單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Ion Movement Explains Huge VOC Increase despite Almost Unchanged Internal Quasi-Fermi-Level Splitting in Planar Perovskite Solar Cells – Fig.2


德國Potsdam UniversityMartin Stolterfoht教授團(tuán)隊(duì)在2021年《Advanced Energy Materials》中,詳細(xì)闡述了QFLS-Voc不匹配的機(jī)制 [2]。他們定義了多數(shù)載流子的選擇性因子(selectivity, Se,maj),此因子與多數(shù)和少數(shù)載流子接觸電阻有關(guān)。通過圖1的能帶圖,他們展示了選擇性與非選擇性電洞接觸層如何影響QFL的彎曲程度,進(jìn)而導(dǎo)致QFLS-Voc不匹配。低遷移率中間層的存在也會(huì)導(dǎo)致嚴(yán)重的QFLS-Voc不匹配,即使QFLS持續(xù)提升,Voc卻可能下降。Fig. 5(b)5(c)5(d)的模擬結(jié)果顯示了低遷移率中間層如何影響QFLS的梯度和Voc的下降趨勢(shì)。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Mismatch of Quasi–Fermi Level Splitting and Voc in Perovskite Solar Cells – Fig.1


要快速篩選具有高效率潛力的材料,并優(yōu)化傳輸層材料,QFLS-Maper檢測(cè)設(shè)備可以提供快速且準(zhǔn)確的QFLS量測(cè),進(jìn)而預(yù)測(cè)材料的理論效率上限并生成Pseudo J-V曲線。這樣,研究者就能在組件制備前,迅速掌握材料潛力,大幅減少試錯(cuò)成本與時(shí)間。


QFLS Mapping:可視化揭示材料均勻性與缺陷

單點(diǎn)QFLS量測(cè)重要,但材料在微觀尺度上的均勻性對(duì)器件性能有決定性影響。QFLS mapping技術(shù)能提供材料表面QFLS分布的可視化圖像,讓材料優(yōu)劣一目了然。通過QFLS mapping,能直接觀察材料各區(qū)域的QFLS差異,識(shí)別局部缺陷或不均勻性問題。

英國University of CambridgeSam Stranks教授團(tuán)隊(duì)2025年《ACS Energy Letters》中,利用超光譜絕對(duì)PL成像技術(shù)獲取了次電池的QFLS映射圖 [3]。他們比較了GO/2PACz串聯(lián)電池與參考電池的QFLS分布,結(jié)果顯示GO/2PACz串聯(lián)電池在低帶隙(LBG)和寬帶隙(WBG)次電池中表現(xiàn)出更均勻的QFLS分布。這表示非輻射復(fù)合被抑制,內(nèi)部與外部電壓損失得到改善。Fig. 3(a)3(b)QFLS映像圖,以及Supplementary Fig. S14S15QFLS分布直方圖,直觀展示了不同界面層對(duì)QFLS均勻性的影響。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Optimized Graphene-Oxide-Based Interconnecting Layer in All-Perovskite Tandem Solar Cells – Fig.3ab


新加坡國立大學(xué)侯毅教授團(tuán)隊(duì)2024年發(fā)表在《Energy & Environmental Science》的論文中,展示了不同鈣鈦礦薄膜的QFLS成像圖 [4]。他們發(fā)現(xiàn),經(jīng)過PhA改質(zhì)的薄膜在整個(gè)檢測(cè)區(qū)域顯示出更高的QFLS值與更佳的空間均勻性,這證明PhA能鈍化缺陷、減少非輻射復(fù)合,從而提升鈣鈦礦薄膜的光電品質(zhì)。Fig. 3(a)呈現(xiàn)了這些結(jié)果。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers – Fig.3a


透過QFLS-Maper檢測(cè)設(shè)備,研究者可以在短短3秒內(nèi)獲得QFLS可視化圖。這樣不僅能快速掌握材料整體的QFLS分布情況,而且能實(shí)時(shí)評(píng)估材料的均勻性與缺陷,對(duì)于早期研發(fā)階段的材料篩選與制程監(jiān)控,具有無可取代的優(yōu)勢(shì)。

量化能量損失:從PLQYQFLS

QFLS不僅能定性判斷材料品質(zhì),更能定量分析能量損失。QFLS的計(jì)算公式為:QFLS = kBT ln (PLQY × JG / J0,rad)。這里的PLQY是光致發(fā)光量子產(chǎn)率,JG是光生電流密度,J0,rad是暗態(tài)輻射飽和電流密度。通過這些參數(shù),能精確拆解輻射與非輻射復(fù)合損失的比例。

德國Potsdam University Martin Stolterfoht教授團(tuán)隊(duì)2020年發(fā)表在《ACS Applied Materials & Interfaces》的論文中,利用PLQYJG定量了QFLS [5]。他們發(fā)現(xiàn),通過比較測(cè)量的QFLS與輻射極限的VOCMAPI和三陽離子鈣鈦礦薄膜都存在非輻射復(fù)合損失(MAPI200 meV,三陽離子鈣鈦礦約110 meV)。他們還觀察到,在HTL/鈣鈦礦界面和鈣鈦礦/C60界面的復(fù)合損失增加。Table 2列出了這些損失的數(shù)據(jù),Supplementary Fig. S5展示了這些損失。這項(xiàng)研究說明了QFLS如何精準(zhǔn)定位復(fù)合熱點(diǎn)。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Defect and Interface Recombination Limited Quasi-Fermi-Level Splitting and Open-Circuit Voltage in Mono – Fig.2


中國科學(xué)院青島生物能源與過程研究所逄淑平教授團(tuán)隊(duì)2024年《Advanced Materials》中,利用QFLS量化鈣鈦礦太陽能電池中非輻射復(fù)合造成的能量損失 [6]。他們利用EQE譜計(jì)算JG,并結(jié)合黑體輻射譜計(jì)算J0,精確評(píng)估QFLS

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Enhanced QuasiFermi Level Splitting of Perovskite Solar Cells by Universal DualFunctional Polymer – Fig.4b


香港理工大學(xué)李剛教授團(tuán)隊(duì)2025年《Advanced Materials》中,運(yùn)用QFLS = qVoc,rad + kBT ln(PLQY)的公式解析低VOC虧損的來源 [7]。他們發(fā)現(xiàn),在SnO2/鈣鈦礦埋藏界面處,通過其策略,能量損失Δ(VOC,rad ? QFLS)62 meV降低至34 meVFig. 4(e)Table S5展示了這些數(shù)據(jù),證實(shí)超低VOC虧損主要?dú)w因于該界面非輻射復(fù)合的消除。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Buried Interface Regulation with a Supramolecular Assembled Template Enables High-Performance Perovskite Solar Cells for Minimizing the VOC Deficit – Fig.4e


QFLS-Maper檢測(cè)設(shè)備憑借其高達(dá)6個(gè)數(shù)量級(jí)的PLQY靈敏度,能從1E-4%PLQY值進(jìn)行量測(cè)。而且,它采用NIST可追溯的零組件與國際認(rèn)可的量測(cè)方式,確保了QFLS量測(cè)的準(zhǔn)確性。這使研究者能夠精確地量化非輻射復(fù)合損失,從而為材料優(yōu)化提供可靠的數(shù)據(jù)支持。

材料與界面工程的指引者

QFLS不僅是診斷工具,更是材料與界面工程的指引。通過QFLS的變化,能評(píng)估不同傳輸層材料的效果,以及化學(xué)清洗或退火等制程對(duì)吸收層表面性質(zhì)的影響。

盧森堡University of Luxembourg Susanne Siebentritt教授團(tuán)隊(duì)2018年發(fā)表在《IEEE Journal of Photovoltaics》的論文中,探討了NaFNaF+RbF后沉積處理對(duì)CIGS薄膜的影響 [8]。他們發(fā)現(xiàn),經(jīng)過NaF+RbF處理的吸收層,QFLS高于僅經(jīng)過NaF處理的樣品,這歸因于非輻射復(fù)合的減少,甚至在CdS沉積之前就已發(fā)生。即使是暴露在空氣中、表面降解的吸收層,經(jīng)過重堿金屬處理后,其QFLS也呈現(xiàn)相同的提升趨勢(shì),表明堿金屬處理改善了吸收層本身的品質(zhì)和表面。Fig. 3呈現(xiàn)了這些趨勢(shì)。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Influence of Sodium and Rubidium Postdeposition Treatment on the Quasi-Fermi Level Splitting of Cu(In,Ga)Se2 Thin Films – Fig.3


阿爾及利亞Higher National School of Renewable EnergiesHichem Bencherif教授團(tuán)隊(duì)2025年《Solar Energy》中,研究了在3D鈣鈦礦中引入2D雙結(jié)層和不同電洞傳輸層的影響 [9]。他們發(fā)現(xiàn),這些優(yōu)化提高了PLQYQFLS,表明非輻射損失降低。Fig. 5Table 6展示了這些提升的效果。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Achieving Quasi-Fermi level splitting near its radiative limit in efficient and stable 2D/3D perovskite solar Cells: Detailed balance model – Fig.5a


QFLS-Maper檢測(cè)設(shè)備能進(jìn)行快速的分層QFLS測(cè)試,并支持原位時(shí)間相變化的PL分析。研究者能在制備過程中,逐層評(píng)估每種材料對(duì)整體性能的影響,迅速辨識(shí)瓶頸,優(yōu)化制程條件與材料選擇。

深入探究載流子動(dòng)力學(xué)與缺陷控制

QFLS不僅與宏觀的器件性能相關(guān),更深入反映微觀的載流子濃度、壽命和摻霧水平。更高的QFLS,可能意味著更低的復(fù)合活性,也可能指示更高的摻雜濃度。要精確區(qū)分這兩種效應(yīng),需要QFLS與其他測(cè)量方法的結(jié)合。

中國河南大學(xué)杜祖亮教授團(tuán)隊(duì)于2023年《Nature Communications》中,探討了如何通過增加QFLS來降低量子點(diǎn)發(fā)光二極管的熱產(chǎn)生 [10]。他們發(fā)現(xiàn),對(duì)于給定電子密度,如果薄膜的吸收率不變,減少QD的堆積密度可以增加電子QFLS。這項(xiàng)研究雖然針對(duì)LED,但其核心思想——通過優(yōu)化載流子管理來提升QFLS,同樣適用于光伏領(lǐng)域。


單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting – Fig1b


QFLS-Maper檢測(cè)設(shè)備不僅能快速獲取QFLS數(shù)據(jù),其多模態(tài)功能也允許與其他測(cè)量技術(shù)結(jié)合,例如時(shí)間分辨PLTRPL),從而更全面地分析載流子壽命、摻雜濃度及缺陷密度等深層物理機(jī)制。


結(jié)語

QFLS及其映射技術(shù)已成為光伏研究的工具。它不僅提供了量化能量損失的手段,更在材料篩選、界面工程、制程優(yōu)化和基礎(chǔ)物理理解方面,發(fā)揮指引作用。從宏觀的器件性能診斷,到微觀的載流子動(dòng)力學(xué)與缺陷控制,QFLS提供了多維度的洞察力,加速了新一代高效能光伏器件的開發(fā)進(jìn)程。掌握并善用QFLS分析,是任何從事光伏材料與器件研究的專業(yè)人員的重要技能。

參考文獻(xiàn)

1.            Herterich, J., Unmüssig, M., Loukeris, G., Kohlst?dt, M., & Würfel, U. (2021). Ion movement explains huge VOC increase despite almost unchanged internal quasi-fermi-level splitting in planar perovskite solar cells. Energy Technology, 9(4), 2001104. DOI: 10.1002/ente.202001104

2.            Warby, J., Shah, S., Thiesbrummel, J., Gutierrez-Partida, E., Lai, H., Alebachew, B., Grischek, M., Yang, F., Lang, F., Albrecht, S., Fu, F., Neher, D., & Stolterfoht, M. (2023). Mismatch of quasi–fermi level splitting and Voc in perovskite solar cells. Advanced Energy Materials. DOI: 10.1002/aenm.202303135

3.            Fitzsimmons, M. R., Roose, B., Han, Y., Kang, T., Chiang, Y.-H., Huang, C.-S., Lu, Y., Yang, T. C.-J., Chosy, C., Guan, S., Anaya, M., & Stranks, S. D. (2025). Optimized Graphene-Oxide-Based Interconnecting Layer in All-Perovskite Tandem Solar Cells. ACS Energy Letters, 10(2), 713–725. DOI: 10.1021/acsenergylett.4c03065

4.            Wei, Z., Zhou, Q., Niu, X., Liu, S., Dong, Z., Liang, H., Chen, J., Shi, Z., Wang, X., Jia, Z., Guo, X., Guo, R., Meng, X., Wang, Y.-D., Li, N., Xu, Z., Li, Z., Aberle, A. G., Yin, X., & Hou, Y. (2025). Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers. Energy & Environmental Science. Advance online publication. DOI: 10.1039/D4EE04029E

5.            Zhang, S., Shaw, P. E., Zhang, G., Jin, H., Tai, M., Lin, H., Meredith, P., Burn, P. L., Neher, D., & Stolterfoht, M. (2020). Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 12(33), 37647–37656. DOI: 10.1021/acsami.0c02960

6.            Liu, D., Chen, C., Wang, X., Sun, X., Zhang, B., Zhao, Q., Li, Z., Shao, Z., Wang, X., Cui, G., & Pang, S. (2023). Enhanced Quasi-Fermi Level Splitting of Perovskite Solar Cells by Universal Dual-Functional Polymer. Advanced Materials. Advance online publication. DOI: 10.1002/adma.202310962

7.            Wang, Z., Liang, Q., Li, M., Sun, G., Li, S., Zhu, T., Han, Y., Xia, H., Ren, Z., Yu, B., Zhang, J., Ma, R., Chandran, H. T., Cheng, L., Zhang, L., Li, D., Chen, S., Lu, X., Yan, C., Azmi, R., Liu, K., Tang, J., & Li, G. (2025). Buried Interface Regulation with a Supramolecular Assembled Template Enables High-Performance Perovskite Solar Cells for Minimizing the VOC Deficit. Advanced Materials. Advance online publication. DOI: 10.1002/adma.202418011

8.            Wolter, M. H., Bissig, B., Avancini, E., Carron, R., Buecheler, S., & Jackson, P. (2018). Influence of Sodium and Rubidium Postdeposition Treatment on the Quasi-Fermi Level Splitting of Cu(In,Ga)Se2 Thin Films. IEEE Journal of Photovoltaics, 8(5), 1320–1325. DOI: 10.1109/JPHOTOV.2018.2855113

9.            Aouni, Q., Kouda, S., Batoo, K. M., Ijaz, M. F., Sahoo, G. S., Bhattarai, S., Sasikumar, P., & Bencherif, H. (2025). Achieving Quasi-Fermi level splitting near its radiative limit in efficient and stable 2D/3D perovskite solar Cells: Detailed balance model. Solar Energy, 286, 113144. DOI: 10.1016/j.solener.2024.113144

10.       Gao, Y., Li, B., Liu, X., Shen, H., Song, Y., Song, J., Yan, Z., Yan, X., Chong, Y., Yao, R., Wang, S., Li, L. S., Fan, F., & Du, Z. (2023). Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nature Nanotechnology, 18(10), 1168–1174. DOI: 10.1038/s41565-023-01441-z





版權(quán)所有©2025 光焱科技股份有限公司 All Rights Reserved    備案號(hào):滬ICP備2021022654號(hào)-3    sitemap.xml    管理登陸    技術(shù)支持:化工儀器網(wǎng)    
国产精品资源在线观看_h网站视频在线观看_在线满18网站观看视频_国产黄色免费网

          国产麻豆视频精品| 一道本成人在线| 成人午夜视频在线观看| 91福利在线看| 国产偷国产偷亚洲高清人白洁| 夜夜操天天操亚洲| 国产精品一区二区久久不卡 | 国产91精品欧美| 欧美日韩国产一二三| 国产精品精品国产色婷婷| 美日韩一区二区| 欧美性生交片4| 中文字幕中文字幕在线一区| 韩日欧美一区二区三区| 欧美高清视频www夜色资源网| 中文字幕一区二区三区不卡 | 成人自拍视频在线观看| 日韩视频一区二区在线观看| 亚洲欧美国产高清| 丁香啪啪综合成人亚洲小说 | 欧美videos中文字幕| 亚洲一区视频在线观看视频| 成人av资源站| 久久久久久久久久久久电影| 日韩精品一二三| 在线免费亚洲电影| 亚洲视频综合在线| 丁香天五香天堂综合| 久久无码av三级| 精品一区二区三区在线播放| 欧美乱妇15p| 亚洲综合色区另类av| a亚洲天堂av| 国产精品网站导航| 风间由美性色一区二区三区| 久久日韩粉嫩一区二区三区| 伦理电影国产精品| 欧美一区二区三区不卡| 午夜激情一区二区三区| 欧美羞羞免费网站| 夜夜嗨av一区二区三区四季av| 色婷婷av一区二区三区gif| 亚洲欧洲日韩一区二区三区| 成人综合激情网| 亚洲国产激情av| 成人高清av在线| 国产精品久久久久久亚洲毛片 | 精品一区二区国语对白| 91精品国产一区二区三区蜜臀| 亚洲成av人片在线观看无码| 欧美日韩精品高清| 天天操天天色综合| 91精品国产欧美日韩| 蜜臀久久久99精品久久久久久| 日韩一区二区三区视频| 美腿丝袜亚洲一区| 精品成人一区二区| 国产成人亚洲综合a∨婷婷图片| 国产色一区二区| 成人a免费在线看| 中文字幕国产一区| 欧美一区二区三区视频免费播放| 亚洲欧美另类小说| 色婷婷精品久久二区二区蜜臂av| 亚洲乱码一区二区三区在线观看| 色偷偷成人一区二区三区91 | 久久国产生活片100| 精品卡一卡二卡三卡四在线| 韩国av一区二区三区在线观看| 久久五月婷婷丁香社区| 高清久久久久久| 中文字幕一区在线观看| 91福利视频久久久久| 亚洲成a人片在线观看中文| 7777女厕盗摄久久久| 激情五月激情综合网| 亚洲国产岛国毛片在线| 色欧美乱欧美15图片| 亚洲成人先锋电影| 日韩无一区二区| 国产成人超碰人人澡人人澡| 中文字幕一区二区在线观看| 欧美系列一区二区| 久久 天天综合| 中文字幕中文字幕一区| 欧美无乱码久久久免费午夜一区| 奇米影视7777精品一区二区| 久久精品人人爽人人爽| 色八戒一区二区三区| 青草av.久久免费一区| 国产女主播一区| 欧美午夜精品久久久| 久久99精品国产.久久久久久 | 亚洲福利一区二区| 欧美成人艳星乳罩| av亚洲精华国产精华精华| 亚洲18色成人| 国产亚洲精品免费| 欧美午夜精品一区二区三区| 精品一区二区三区在线观看| 国产精品久久免费看| 欧美精品在线观看一区二区| 国产精品一区二区视频| 亚洲国产日韩在线一区模特| 欧美tk丨vk视频| 精品久久国产老人久久综合| 大尺度一区二区| 亚洲午夜成aⅴ人片| 日韩欧美电影一区| av电影在线观看完整版一区二区| 亚洲不卡在线观看| 欧美激情中文字幕| 欧美狂野另类xxxxoooo| 高清在线观看日韩| 午夜精品久久久久久| 国产视频一区二区在线观看| 欧美色图在线观看| 国产成人在线影院| 午夜精品福利一区二区三区av| 国产无一区二区| 欧美精品日日鲁夜夜添| 成人av影视在线观看| 奇米亚洲午夜久久精品| 亚洲免费观看在线视频| 久久女同精品一区二区| 欧美日韩国产一二三| 99久久99久久久精品齐齐| 美女精品自拍一二三四| 一区二区三区四区激情| 久久精品网站免费观看| 91精品国产全国免费观看| 91丨porny丨户外露出| 国产乱对白刺激视频不卡| 偷拍一区二区三区四区| 17c精品麻豆一区二区免费| 精品国产一区二区三区不卡| 欧美系列日韩一区| 国产精品久99| 精品欧美一区二区久久| 不卡在线观看av| 久久精品国产亚洲a| 亚洲美女屁股眼交| 国产欧美精品一区二区色综合朱莉| 欧美日本一区二区三区| 高清不卡在线观看av| 久久精工是国产品牌吗| 亚洲高清在线视频| 亚洲欧美在线视频| 国产农村妇女毛片精品久久麻豆 | 欧美一区二区三区成人| 色呦呦网站一区| 成人动漫中文字幕| 国产精品羞羞答答xxdd| 美国一区二区三区在线播放| 午夜一区二区三区在线观看| 一区二区在线看| 中文字幕亚洲电影| 国产精品网站在线观看| 久久色.com| www国产精品av| 精品噜噜噜噜久久久久久久久试看| 欧美精品三级日韩久久| 欧美日韩视频在线一区二区| 91九色最新地址| 色哟哟国产精品| 色婷婷激情一区二区三区| 91偷拍与自偷拍精品| 99热精品一区二区| 成人一二三区视频| 国产女主播视频一区二区| 5月丁香婷婷综合| 欧美日韩亚洲综合| 欧美亚洲国产一区二区三区va| 色综合久久久久网| 色婷婷久久久亚洲一区二区三区| 99天天综合性| 91蜜桃网址入口| 色综合天天视频在线观看| 91污片在线观看| 色中色一区二区| 在线免费观看日本一区| 欧洲激情一区二区| 欧美日韩国产影片| 91精品在线麻豆| 日韩视频中午一区| 精品乱人伦小说| 国产偷v国产偷v亚洲高清| 国产精品视频免费| 一区二区中文字幕在线| 亚洲另类中文字| 亚洲国产精品麻豆| 日韩福利电影在线| 久久97超碰国产精品超碰| 国产露脸91国语对白| 成人激情校园春色| 在线中文字幕一区| 91精品国产入口在线| 久久中文娱乐网| 中文字幕一区免费在线观看| 一区二区三区在线观看欧美|